
ISRAEL JOURNAL OF MATHEMATICS. Vol. 31, No. 2, 1978 

SOME CONDITIONS WHICH ALMOST 
CHARACTERIZE FROBENIUS GROUPS 

BY 

A. R. CAMINA 

ABSTRACT 

The main result of this paper is the following: Let G be a group with a proper 
non-trivial normal subgroup H such that each coset of H distinct from H is 

contained in a conjugacy class of G. If G is not a Frobenius group with kernel H 
then one of H or G/H is a p-group. The hypothesis of this theorem is shown to 
be equivalent to a condition on characters of G. The only group the author 
knows which satisfies this hypothesis and is not either Frobenius or a p-group is 
one of order 72. 

w Introduction 

If G is a Frobenius  g roup  with kernel  H the irreducible characters  of G can 

be divided into two families, those with H in the kernel  and those for which H is 

not in the kernel.  Let  us label the second set X,, X.. Each  X~ is induced f rom a 

character ,  say, sc~ of H and X~, when restricted to H, is the sum of the conjugates  

of ~:,, see [1]. So each X, vanishes on G \ H  and there exists a set of integers a~, 

i = 1, - �9 -, n such that E;k, aiX~ is constant  ( = - 1) on H ~. We  extract these ideas 

as  

HYPOTHESIS (F1). G is a finite g roup  with a p roper  normal  subgroup H ~  1 

and a set of irreducible non-trivial characters  of G , X , , . .  ",X,, where n is a 

natural number ,  such that 

(a) Xi vanishes on G \ H  and 

(b) there exist natural  numbers  a , , . . . ,  an > 0 such that E~'=, otix~ is constant  

on H ~. 

A n o t h e r  proper ty  en joyed  by Frobenius  groups  is: if x is in G \ H  then xy is 

conjugate  to x for all y in H. 

Received December 16, 1977 and in revised form May 23, 1978 

153 



154 A.R. CAMINA Israel J. Math. 

HYPOTHESIS (F2). G is a finite group with a proper  normal subgroup H E  1 

such that if x ~ G\H,  x is conjugate to xy Vy E H. 

The first result is the following: 

THEOREM 1. G satisfies hypothesis (F1) if and only if G satisfies hypothesis 

(V2). 

This result will be proved in w In w we investigate some properties of groups 

satisfying (F2). We prove a result which when combined with Theorem 1 leads to 

the following theorem: 

TriEOREM 2. Let G be a group satisfying (F2) (or (F1)) then G satisfies one of 

the following conditions : 

(i) G is a Frobenius group with kernel H, 

(ii) H is a p-group for some prime p, or 

(iii) G / H  is a p-group for some prime p. 

It is not too difficult to show that if H and [G : H ]  have coprime orders and G 

satisfies (F2) then G is a Frobenius group with kernel H. Thus the main 

argument is to force either H or G / H  to be a p-group if G is not Frobenius. 

There are certainly p-groups G satisfying these hypotheses, e.g. extra-special 

groups. May I thank Ian D. Macdonald for pointing out to me that a number  of 

simple thoughts on p-groups with this structure turned out to be false. The only 

example the author knows where G / H  is a p-group and / - / i s  not, is when G has 

order 72 and is the Frobenius group which has kernel of order  9 and the 

complement is quaternion of order  8. We choose H to be the group of order  18. 

If x is any element of order  4 in G, x has 18 conjugates, and since x is conjugate 

to x -' and Hx contains x-1 we can see that Hx is precisely the conjugacy class of 

x. One can see from the discussion in w that it is, unfortunately, not possible to 

use this argument for Frobenius groups unless the complement  is a 2-group. We 

comment here that since Hx contains only elements of the same order  as x the 

results of Hughes Kegel Thompson [1, V w play an important role.  

In the situation where H is a p-group we can investigate the structure of 

G / C o ( H / H o )  where H/Ho is a chief factor of G. This action has the property 

that any non-trivial p ' -element  acts fixed-point-freely on H/Ho. We can also 

observe that Co(H/Ho)  is precisely Op(G) since no p ' -element of G can 

centralize H/Ho. Using some of the more recent classification theorems and 

p-modular  representations of known groups W. B. Stewart [2] has been able to 

classify the possible modules and groups which can occur as G/Op(G) .  Using 

this result we have the following: 
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COROLLARY. Let G satisfy (F2) and assume G is not a soluble group nor is G 

Frobenius. I f  H is a p-group then G/Op ( G ) =  G has a normal subgroup if, such 
w - -  

that G / K  is soluble and 

(a) if p = 2 then K, ~- SL(2, 2"), Sz (2 TM +1) or SL(2, 2") • Sz (22"~), 

(b) if p = 3 then K, = SL(2, 3"), SL(2, 5), SL(2, 7) or SL(2, 17), 

(c) if p >= 5 then I?i ~ SL(2, p") .  

If one refers to W. B. Stewart [2] then more information can be obtained both 

as to the nature of the possible modules on which these groups act as well as the 

structure of G/K.  

In the case where G / H  is a p-group the author has been able to make limited 

progress, certainly none to warrant mentioning, although there is an overlap 

with some work on groups of "central  type".  A group G has been called a group 

of central type if it contains an irreducible character whose degree when squared 

equals [G:  Z ( G) ] .  For some results in this topic and a good bibliography the 

reader is referred to R. Merris (J. Res. Nat. Bur. Standards Sect. B, 80B (1976), 

259). 

The author would like to thank the referee for his helpful comments. 

w Groups satisfying (F2) 

In this section we consider a group G satisfying (F2). We prove a number of 

lemmas about such a group under this hypothesis leading up to a proof of 

Theorem 2. 

LEMMA 1. 

G/H.  Then 

Let x E G but x ~_ H. Let denote the homomorphism from G to 

IC (x)t = 

PROOF. Since each coset of H which is not H is contained in a conjugacy 

class, any conjugacy class not contained in H is a union of cosets of H. If Hu and 

Hv are in the same conjugacy class, u and v are conjugate, in particular a and 13 

are conjugate in t~. Similarly if t~ and t3 are conjugate in t~, Hu and Hv are in 

the same conjugacy class. Hence [G:  C~(x)] = [G:  C~(~)]. [HI. 

Thus IGI/IC~(x)I  = IGI/IC~('2)I and so ICe(x)[ = Ic~($) l  as required. 

LEMMA 2. I f x i s n o t i n H a n d h a s o r d e r m a n d y E C , ( x )  t hen theordero fy  

divides m. 

PROOF. xy has order m and so x " y  " = 1  and so y " =1 .  
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LEMMA 3. I f  x is not in H and has order m modulo H and y E Cn(x ) such that 

y has prime order p say, then p divides m, where m ~ 1. 

PROOF. W e  p rove  this by showing that  the  o r d e r  of x is only  divis ible  by 

p r imes  d iv id ing  m. A s s u m e  x has o r d e r  divis ible  by precise ly  p" where  e => 1 and  

p does  not  d iv ide  m. Then  x = uv where  u has o r d e r  p r ime  to p, v has o r d e r  p ~ 

and  [u, v] = 1. Now x m = u ' v  m and so v "  = x ' ( u " )  -1 but  x "  E H. This  impl ies  

that  v " and  u " have the  same  o r d e r  o r  that  v " and  u " are  both  in H. H o w e v e r  

v " and  u " have  c o p r i m e  o rde r s  (not  bo th  1) and  so v " and  u " a re  in H. N o w  as 

m and p are  cop r ime  we know that  v ~ H. But  [ v , u ]  = 1 and v has o r d e r  

c o p r i m e  to u con t rad ic t ing  L e m m a  2. W e  can now c o m p l e t e  the  a r g u m e n t  s ince 

if y cen t ra l izes  x and y has o r d e r  p, p d iv ides  the  o r d e r  of x by L e m m a  2 and  so 

p d iv ides  m. 

LEMMA 4. I f  there is an element of prime order not in H then H is nilpotent. 

PROOF. This  is a d i rec t  c o n s e q u e n c e  of the  t h e o r e m  due  to Hughes  T h o m p -  

son Kege l  [1; V w 

PROPOSmON 1. I f  H and G / H  are of coprime order then G is a Frobenius 

group with kernel H. 

PROOF. N o w  we know by L e m m a  3 that  if y ~ H , C ~ ( y ) C _ H .  Also  by 

L e m m a  4 we have  that  H is n i lpo ten t .  Using  the resul t  of S c h u r - Z a s s e n h a u s  [1; I 

w we have  a c o m p l e m e n t  to H and now it is easy to see  that  G is a F r o b e n i u s  

group.  

LEMMA 5. I[ there is an element x of G which has order pq modulo H where p 

and q are distinct primes then H is nilpotent. 

PROOF. By L e m m a  3, CH(x p) is a q - g r o u p  and  Cu(x q) is a p - g r o u p .  So 

CH(x p )A  C , ( x  q) = 1 ~ C , ( x ) .  So x m = 1 since x m E C~(x). Thus  x p is an 

e l e m e n t  of p r ime  o r d e r  not  in H and  so by L e m m a  4, H is n i lpo ten t .  

W e  can now turn ou r  a t t en t ion  to the  s t ruc ture  of  the  Sylow subgroups  of  G. A 

s imple  app l i ca t ion  of L e m m a  1 enab les  us to p rove  

LEMMA 6. I f  P is a Sylow p-subgroup of G and there is an x E P such that 

xfi(: H and Cp(x) .  (H n P)  = P then P n H = 1. 

PROOF, Since I C (x)l = I where - deno te s  the  h o m o m o r p h i s m  f rom 

G to G/H,  a Sylow p - g r o u p  of C~(x) has o r d e r  at most  [P :  H N P] .  Since 

CHnp(x)~ 1 when H O P ~  1 we have  a con t rad ic t ion  if C p ( x ) . ( H  O P)  = P. 
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LEMMA 7. Let p be a prime which divides the order of H and [G:  H] .  Let P be 

a Sylow p-subgroup of G then P/P O H contains an elementary Abelian subgroup 

of order p2. 

PROOF. If P/P n H does not satisfy the conclusions of the lemma then 

P/P O H is cyclic or generalized quaternion [1; I I I  w If P/P n H is cyclic and 

x(P N H) is a generator  for P /P n H then Cp(x ). (P O H) = P which is false by 

Lemma 6. Hence  we may assume that P/P n H is a generalized quaternion 

group of order  say 2L 

Let x(P O H) be an element of order 2 "-1. Then x :"-2 = z is such that z2E  H 

and C~,/pnn(zH) = P/P n H. Also I Ce(z)[ ~ 2 "-1 since I(x)l => 2"- ' .  By Lemma  1, 

I Cp(z)I = 2" or 2"- '  but as I C e n , ( z ) l / 1  we know that t C , ( z ) l - -  2". If z 2 / 1 ,  

[<Z>[ > 2  a and Cp(z)= (x> and z " =  1 with (z 2) = Z(P).  As G is an (F2)-group 

there exists s ~ G such that x '  = xz 2. Then (x:) ~ = x 2 and (x) "2= (xz2) ~ = xz 4= 

x. Thus s is a 2-power element which centralizes z and hence is in (x>. This 

contradicts the original definition of s. 

Thus we have that z 2 = 1. Then every element of (P O H)z has order  2 and z 

inverts P N H which is therefore Abelian. Since ]Cen,(z)l = 2, P n H now has 

at most one involution and so is cyclic. If IP O H I > 2 ,  P/Cp(P O H) is Abelian 

but Cp(P n H) = P N H which is a contradiction. So IP n H I = 2 but now since 

the Schur multiplier of a quaternion group istrivial [1; V w we can assume z is 

central in P which by Lemma  6 is false. 

We can now complete this section I~y proving 

PROPOSITION 2. Let G be a group satisfying (F2). Then either (i) G is a 

Frobenius group or (ii) H is a group of prime power order or (iii) G /H is a group of 

prime power order. 

PROOF. By Lemma  5, H is nilpotent unless all elements of G / H  have prime 

power order. We also know that if a prime p does not divide the order  of H and 

does divide the order  of G, H is nilpotent by Lemma  4. Thus if H is not 

nilpotent and P is a Sylow p-subgroup of G then P O H ~  1. Assume now that H 

is not nilpotent and let M / H  be a minimal normal subgroup of G/H. Assume 

M / H  is an elementary Abelian subgroup and G/H is not a group of prime 

power order. If p is a prime which does not divide the order of M / H  but does 

divide [G : H I  then P/P n H acts fixed-point freely on M/H, where P is a Sylow 

p-group  of G. Hence  P/P n H has no elementary Abelian subgroup of order p2. 

This contradicts Lemma  7. 

If M / H  is a non-Abelian subgroup we have by M. Suzuki [3] that M / H  is 
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isomorphic to one of PSL (2,5), PSL (2, 7), PSL (2, 9), PSL (2,17), PSL(3,4), Sz (8) 

or Sz(32). Hence G/H is one of these groups extended by a subgroup of its 

automorphism group. But in all cases G/H has a cyclic Sylow p-subgroup for 

some prime p and this is again false�9 

So we may now assume that H is nilpotent or [G: H]  is a prime power. To 

prove the proposition we need only show that if H satisfies neither (ii) nor (iii) 

then it is a Frobenius group. By Proposition 1 we can assume there is a prime p 

such that if P is a Sylow p-subgroup of G, neither P/P n H nor P n H are 

trivial. Let R be a Sylow subgroup of H distinct from P. Then N6(R)D P and 

Cc(R)D P n H. Hence P/P N H acts fixed-point freely on R and this con- 

tradicts Lemma 7. 

w Proof of Theorem I 

Assume that G satisfies (F1). Let I G l = g  and I H I =  h. We consider the 

equation (Ea,X,, Xi) = aj. 

(1) 

. ' .  O/j 
1 

.'. got,:(~a,X,(1,)X,(1)-CX,(1)+ 

where c = Y,a,X, (x), 

c y ,  x,(x), 
x E G  

for all pairs 1 < ] ~  k < 

Since g ~  0 we have that 

(2) = x (I)/o k = f 

Consider the equation (s l a )  = 0, 

(3) .'�9 0 = ( ~  a,X,(1))+(h-l)c. 

Combining (1), (2) and (3) we obtain 

say V j, k. 
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g = f ( ( ~  a i r ) +  ( ~  a ~ f ) / ( h - 1 ) ) .  

If we put E a ]  = m we have 

g = m f2(1 + 1/(h - 1)) 

. '. g = m f h / ( h  - 1). 

Let 0 1 " "  0, be the remaining irreducible characters of G. Then 

X,(1)2+ ~ 0~(1)-- g, 
i = l  i = l  

0](1) = g - ~ a].  (g(h - 1))/(mh ), 
i • l  iffil 

0](1) = g - 
g(h 1) 

i=1 mh . m = g / h .  

Now since H is normal in G there exist characters of G which contain H in 

their kernel and the sum of the squares of their degrees equals g/h. Hence these 

plus the X1, �9 �9 ", X, are all the characters of G. Now let x E G \ H  and let y ~ H. 

Then xy is not in H. For a character X,,X,(X)= Xi(xy)= 0. For a character 

0,, 0, (x) = 0, (xH) = 0, (xy). Thus x and xy have the same character values for all 

the characters of G and hence are conjugate [1]. 

We now assume that G satisfies (F2). Let 01,-" ", 0r be the irreducible 

characters of G with H in the kernel and Xl," �9 ", X, be the remaining characters. 

Thus I C~(x)l--  Er=, I O,(x)l 2 + E7=1 [X,(X)l 2. Also 

IC~m(xH) l= ~ ]O,(xH)r= ~ IO,(x)12=lCc(x)[ 
iffil i = 1  

by Lemma 1" So E~'=l [X~(x)[ 2 = 0 and thus X~(x) = O, i = 1 , . . . ,  n and this is true 

for all x not in H. 

Consider the character X, for some i, 1 _-< i _-< n. There exists an irreducible 

character ~, of H and a natural number  e, such that X~ [H = e,E~7 where u runs 

over a system of coset representatives for the stabilizer of ~,. If ] ~  i the 

irreducible characters of H involved in XJ [u are disjoint from those involved 

with X~ for otherwise XJ [u would be a multiple of )6 I~. But since X, and XJ vanish 

outside H, Xs would be a multiple of X~ and that is false. Let r / b e  any non-trivial 

irreducible character of H. Then 

(n ~, O,)c = (rt, 0, [u) ,  = ('q, 0, (1), l u )  = 0, i = 1 , 2 , . . . , r .  
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Thus  r/~ involves  a cha rac t e r  of  the  fo rm )6. 

Let  e = l.c.m. (el: 1 =< i -< n) .  So we have  

e/el Xi = e p ~ - e l H  
H 

w h e r e  pH is the  r egu la r  cha rac t e r  of H.  H e n c e  with a~ = (e/e~)~:~(1) 

~ a , X ~  is cons tan t  on H.  
i=l 

Thus  G satisfies (F1) and this c o m p l e t e s  the  p roo f  of  T h e o r e m  1. 

REFERENCES 

1. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967. 
2. W. B. Stewart, Largely ]ixed-point-[ree groups, to appear. 
3. M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105-145. 

SCHOOL OF MATHEMATICS AND PHYSICS 

UNIVERSITY OF EAST ANGLIA 

NORWICH, ENGLAND 

Israel J. Math. 


